Homework Set 3
Physics 319
Classical Mechanics

Problem 5.13
a) To find the equilibrium position (where there is no force) set the derivative of the

potential to zero
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b) If x=r—ARis much smaller than AR, the second order expansion of 1/(1+ X) is

needed to obtain the first significant term in the potential.
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Problem 5.17
a) Suppose

X(t)=A, cos(a,t)

y(t)=A cos(a,t-3)
and o, /w, = p/q,where p and g are the lowest integers that specify the rational
number ratio. Because qo, = pw,, one defines the period of the common oscillation
frequency 7 =27/dw, =27/ po,. Now after the period T = pdr =27p/ o, =279/ o,
, the motion repeats because

X(t+T)=Acos(at+oT)=Acos(at+2zp)= A cos(mt)=x(t)

y(t+T)=A cos(at+a,T -5)=A cos(myt+27q-5)= A cos(mt —5) = y(t)

One way to characterize an irrational number is as a number whose decimal expansion

never repeats. Suppose one approximates the frequency ratio first by its 100 decimal
expansion, then its 200 decimal expansion, and so forth. By part a) the repetition period

of the 100 decimal expansion is 270/ @, = 2710 / ,, the repetition period of the 200

b)

digit decimal expansion is 2710°® /a)y, and so forth. If the expansion of the frequency



ratio never repeats, and the repetition period gets longer the closer one gets to the
actual irrational value, at the actual irrational value the pattern never repeats.

Problem 5.23
de d|{m_, k,
— =—| —X"+—=X
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by equation 5.24. By the work-energy theorem, the rate that work is dissipated by the damping
force is

W = —Fx =bx?

Problem 5.42

® = \/% =0.57155 sec™

If the exponential damping time is 8 hrs = 28800 sec, the Q-value is

Q- %% = (14400)(0.571565) = 8230 .

Problem 5.51
For the forcing function to be real, the f_ are all real. Now

f(t) :g f, cos(nat) :g f,Re(e™)= Re(g fnei”“’tj =Re(g(t))

For an individual n, the solution to the driven oscillator problem
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is, by superposing the solutions from the individual terms on the RHS
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If x,(t)= Re( f " /(a); -n’@’ +2,Bina))), summing over all the ns yields the required result.



Problem 6.12
The stationary condition is, from the Euler-Lagrange equation

d oL oL
L= x~/1— 2 ———-==0
Ty
By evaluating the proper derivatives, the equation for the stationary solution is
d —Xy —0— C?2 (1_ y!Z) _ Xzyfz
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where the integration constant in X is chosen to be C? for future convenience. The integral is
the standard form

y=Csinh™(x/C)+D

where D is the second integration constant.

Problem 6.16

The formula for the distance between two points on a sphere, Problem 6.1, is

0,
D=R[L+sin* ¢ * (0)d0
o

(This comes from the Pythagorean Theorem applied to a small displacement on the sphere.

Then dD = \/( Rd@)2 +(Rsin 49d¢)2 . This comment is not part of the solution.) D is stationary
when
A2 ’
da A o B o __sief
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is constant as a function of #. Using the suggested trick, if the first point is aligned with the z-
axis. Any path passing through the pole necessarily has ¢’ =0 nearby the pole and as sin@=0

at the pole, C =0. Therefore, for the geodesic, ¢ =const as a function of @. The geodesicis a

longitude line at the pole, i.e., it is a great circle of the sphere.
It’s not too bad to just integrate the equation for ¢’
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These coordinates are on the plane passing through the center of the sphere.
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Problem 6.18

0,
The distance function in polar coordinates is D = I\/1+ r?(de/ dr)zdr or

0,
D= J.,fr2 +(dr/ d<9)2d49 because dD =+/r?d@* +dr? . It turns out using expression 1 is “the
91

easy” way, and expression 2 is a bit more involved. Using the Euler-Lagrange equation on
expression 1 yields
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The integral is a standard one that may be solved by the substitution
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C?sinddé cosd cosd
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This expression is the polar equation for a line: C is identified as the distance of closest
approach of the line to the origin and 6, is the angle the line makes with the Y -axis, positive
being angle in counterclockwise orientation.
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Using expression 2 for the distance, the Euler-Lagrange equation is



1.0,
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Because (this trick discussed in Problem 6.20)
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integrating in @ yields
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Problem 6.26
The integral to extremize is

S = f[x(u),y(u),x(u),y (u),udu
As is the book’s argument, assume a small deviation from the stationary solution
x=x(u)+asx(u)
y=y(u)+B5y(u)
X' =X'(u)+asx (u)
y'=y'(u)+psy'(u)

For the solution to be stationary



ﬁziff[x(u)+a5x(u),y(u)+,85y(u),x’(u)+a5x’(u) u)+Bsy'(u u]du—
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Because these final two integrals must vanish for all variations 6x(u)and &y(u), the Euler-

Lagrange equations follow
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Problem 6.27

The distance function to extremize is

D = [y/(dx/du)’ +(dy / du)’ +(dz/ du)’du

Applying the Euler-Lagrange equations for the three coordinates in turn
d dx/du

il =0
AU \(dx/du)’ +(dy/du)’ +(dz/ du)’

d dy/du 0
a\/ 2 2 2
(dx/du)” +(dy/du)” +(dz/du)

d dz/du 0

du\(dx/du)’ +(dy/du)’ +(dz/du)’
(dx/du,dy/du,dz/du) is a constant vector as a function ofu .
" X(u) =%, +(dx/du)u wheredx/du=(X—%,)/Au



